
INCREASE SYSTEM AVAILABILITY
BY LEVERAGING APACHE TOMCAT
CLUSTERING

2ROGUEWAVE.COM

Open source is the dominant force in software development today, with over 80 percent of
developers now using open source in their software1. With an increase in use of open source
software (OSS), support and knowledge of these packages becomes critical to companies.
Apache Tomcat is one of the most popular open source software implementations in the industry,
and one of the most requested support packages to Rogue Wave OSS support experts. Support
requests related to Apache Tomcat cover many aspects of the software, but a popular topic is
always high-reliability and clustering.

Running Apache Tomcat as an application container for revenue generating applications is a
decision many companies make every day. Unfortunately, this is where the decision making stops.
The design should continue to include a system configuration that will protect these cash generating
applications even in the event of catastrophic system failure. This is where Tomcat clustering plays
a role. By implementing a solid clustering design you protect your company from systems failure.

This paper will walk through what is clustering and why you should cluster your Tomcat application
servers. It will look at the multiple options for clustering setups, and help you identify which one is
the best for your IT infrastructure. Finally, you can review some detailed example configurations
and common issues when clustering with Apache Tomcat.

1 Results from Forrester Research – Forrsights Developer Survey Q2-2015.

3ROGUEWAVE.COM

WHAT IS CLUSTERING?
Clustering, when referring to information technology systems, is two or more independent interconnected systems
(nodes), interlinked to provide reliability. Reliability can come in the form of high-availability, improved scalability,
improved application availability, and ease of maintenance.

Independent interconnected systems sounds complicated, although it’s not. In the case of this paper we are referring
to Tomcat systems. An instance of Tomcat is an independent system. Clustering instances of Tomcat makes them
interconnected. Tomcat instances in a Tomcat cluster are often referred to as a node. Individual components in any
network configuration can normally be referred to as nodes, but for the duration of this paper, we are referring to
nodes as Tomcat instances.

A Tomcat cluster is a group of Tomcat instances that are connected. There are different ways that they can be connected.
The Tomcat instances can be running on the same physical device, same virtual device, or disparate systems. There are
many different options when it comes to clustering Tomcat, and we will discuss these in detail further on in this paper.

WHY YOU SHOULD CLUSTER
Clustering can solve different problems. For instance, you have a web application, serving approximately five thousand
concurrent requests, running on your server. Under this load, your single server is maxed out. New users are receiving
404 errors. Supporting larger numbers of concurrent requests is one of the advantages of high-availability clustering.
The goal of high-availability clustering is 99.999 percent (“five nines”).

Another example of a problem clustering is the solution for failover. If your business is running a web application that
earns income for your business and this web application is running in a non-clustered environment, you are at risk. If
your application is on a Tomcat server that is not clustered and the Tomcat server fails, that source of revenue stops
generating money every second the system is down. Setting up a simple Tomcat cluster containing two instances, this
issue is preventable. In a properly configured cluster, all requests to the failed server will be directed to the remaining
working instance. This will preserve your revenue stream even if there is performance degradation from losing 50
percent of the nodes in the cluster.

These are just some examples of why it pays off to cluster Tomcat, or at least research a little more. In addition to these
examples above, Tomcat improves your systems availability. High-availability is a goal that many companies seek to
improve the appearance and availability of their services.

A normal system’s yearly average uptime is called it’s availability. High-availability is a pre-arranged, contracted level
of performance that will be maintained during the contract length. Granted, that is not very easy to understand. An
example of high-availability could be: your web server is guaranteed to be available “five nines.” This means that in a
given year the server will have a maximum of 5.26 minutes of unscheduled downtime a year.

To achieve high-availability you need to implement geographic separation. Geographic separation, in regards to our
server configuration, is installing nodes of the cluster in geographically different locations. This provides safety against
regional power outages and other locational risks like storms and floods.

4ROGUEWAVE.COM

DETERMINING THE BEST CLUSTERING SETUP FOR
YOUR ARCHITECTURE
Everyone wants to build a reliable, stable, and available application container platform. But, in order to do so you need to
determine which clustering configuration fits you and your business the best.

In determining your configuration you must evaluate the resources at hand. This section will discuss possible options for
your resources, without actually taking your resources into consideration. The next section will make suggestions as to
which configurations your company may leverage depending on the resources available.

Vertical, horizontal, or hybrid cluster
A vertical cluster expands vertically. A horizontal cluster expands, you guessed it, horizontally. What does this mean?
A vertically expanding cluster has limited horizontal layout. Horizontal layout would be multiple systems/resources.

A vertical cluster is on a single machine — a machine can be many things, including a physical device or a virtual host.
As need increases, Tomcat instances are spawned on the same machine, using configuration tweaks that allow multiple
instances to run on the same system.

A horizontal cluster contains Tomcat instances running on separate machines. If demand for processing increases and
you had a pure, horizontal cluster configuration, the network technician (or you) would install a new machine, virtual or
physical, and on that machine is a new Tomcat instance.

Real life is often very different from dictate. Companies rarely have a pure horizontal or vertical cluster configuration.
Most systems are hybrids. A hybrid cluster is a mixture of vertical and horizontal clustering to facilitate a specific need
and/or to match the hardware provided.

Homogeneous or heterogeneous cluster
Is your setup going to be for multiple applications, or just a few, or maybe just one? Do you have applications that require
specific hardware? This determines whether or not you decide to use a heterogeneous or homogeneous setup. While
this section defines your options, the next section will help you decide which option suits your needs.

A homogeneous setup is very common. Companies will often duplicate their Tomcat environment, launching servers on
many devices with a simple copy of the Tomcat directory. A Tomcat cluster that has the same web applications deployed
on all nodes is considered homogeneous.

Homogeneous setups can be hard to keep truly identical. Sometimes, especially after node failure and replacement,
it can be hard to synchronize the Tomcat instances. The best way to do this is to create an image of the Tomcat setup
from a node designated as the primary node. As long as this image stays up-to-date you can distribute it over as many
Tomcat setups as you prefer.

Load balancing
Load balancing happens outside of the Tomcat cluster. The broad scope of load balancing will not be touched in this
document. We are concerned with Apache Httpd server and the built-in load balancing/gateway features, as this is free
and available, and because of this, it is a common solution in many enterprise systems.

5ROGUEWAVE.COM

To use Apache Httpd as a load balancer we will configure it as a gateway. Once it is aware of its nodes, it is able to balance
traffic across these nodes. Further on in the paper, we will show an example configuration, using mod_proxy_ajp, of
an Httpd gateway with “Round Robin” load balancing.

Another common enterprise configuration option for load balancing is the hardware load balancer. A hardware load
balancer (HLB) performs the same tasks as a software balancer (like the one in the Apache Httpd server). The main
difference between a software balancer and a hardware balance (besides price), is resources. A HLB has dedicated
hardware resources (RAM), processor, network adapters, etc. This allows hardware balancers to perform at a much
more efficient rate, while providing more features. This is also an infinitely more expensive method, as you can find
many free open source load balancing solutions.

DETERMINING THE BEST FIT FOR YOUR
ORGANIZATION AND RESOURCES
There are many factors in determining your cluster configuration. When choosing how to configure your cluster it’s
critical to examine the resources available before making a decision.

Scalability
How do you choose your scalability options? This relies heavily on the availability of hardware resources. For instance,
you have 4 low-end servers, meaning they have one processor with 1- 4 gigabytes of RAM. This would be an ideal
situation for a horizontal cluster. Each member of the cluster would be able to run one instance of Tomcat efficiently.
One of the servers could be used as a balancer running Apache Httpd server. Here is a drawing of the architecture.

Internet – Incoming Request

Server 1 – Apache Web Server

Server 2 – Tomcat Instance 1 Server 3 – Tomcat Instance 2 Server 4 – Tomcat Instance 3

6ROGUEWAVE.COM

If your situation was a bit different, and you had better servers, you could consider a hybrid cluster. If there are servers
available with two or more processors and a large amount of ram (8 gigabytes or more) this would be ideal for multiple
Tomcat instances. In this configuration you can setup a hybrid cluster by running multiple instances of Tomcat on
multiple machines, and multiple instances of Apache Httpd to handle the load of load balancing. This configuration
could look something like this:

Heterogeneous or homogeneous Tomcat configuration
Determining heterogeneous or homogeneous setup can be simple in some situations. The easiest situation is one with a
single web application. If there is only one application to deploy, you deploy it to all members in the cluster. This is a very
straightforward homogeneous configuration.

Unfortunately, most companies do not have one single web application; however, this situation is not overly complicated
unless the company has an extremely large number of applications.

Internet – Incoming Request

Load Balancer

Server 1
Apache Web Server 1
Apache Web Server 2

Server 2
Apache Web Server 3
Apache Web Server 4

Server 3
 Tomcat Instance 1
Tomcat Instance 2

Server 5
 Tomcat Instance 5
Tomcat Instance 6

Server 6
 Tomcat Instance 7
Tomcat Instance 8

Server 4
 Tomcat Instance 3
Tomcat Instance 4

Server 8
 Tomcat Instance 11
Tomcat Instance 12

Server 7
 Tomcat Instance 9
Tomcat Instance 10

7ROGUEWAVE.COM

The division of your applications over Tomcat nodes will be your choice. The Tomcat configuration of the nodes will be
a little more complicated and we review this further in the examples section. If the company has an application that
requires heavy processing and large amounts of RAM (HPR1,) you can setup this application on two nodes by itself. After
this, take the remaining applications (GUI) and place them on two different nodes in the cluster. This will prevent the GUI
application from being bogged down when HPR1 is consuming the CPU and RAM. This cluster might look like this:

There are many things to take into consideration when designing and building your cluster. If a large company is relying
on you to provide a reliable, highly-available application implementation, then clustering and load balancing is the right
choice. Regardless of if you are new to clustering, or an old hand, purchase a support contract. There are companies
that will provide open source software support for your Tomcat and Apache Httpd configuration. This will allow you to
offer your customers an extremely reliable, available service while at the same time providing someone to turn to if you
run into problems.

Internet – Incoming Request

Load Balancing / Proxying
(Possibly Multiple Servers)

Tomcat Cluster
Session replication between nodes

HPR App Requests GUI App Requests

GUI

GUI

GUI

HPR1 HPR2

8ROGUEWAVE.COM

ENTERPRISE APACHE TOMCAT 8 CLUSTERING —
CONFIGURATIONS AND COMMON ISSUES
This is not a complete step-by-step tutorial on cluster creation, but we will provide you with the tools you can use to
implement a cluster rapidly and effectively. Whether you have created many clusters in the past or this is your first
attempt, we hope that you will be able to learn something, whether it be basic or advanced, from the information
discussed in this paper. To limit the liability of your attempt at creating a cluster, you can set up a machine, virtual or
physical, just for this task.

Note – You can run multiple Tomcat instances on a single virtual/physical machine by tweaking just a few settings, mainly port
numbers so the instances don’t interfere with each other. The configuration of these Tomcat instances is well outside the scope
of this document, although it is not difficult to accomplish. Settings for the connectors in your server configuration files can be
found at the Apache Tomcat 8 website. Below are two server configurations that you can use to run a simple cluster, just start
with two instances of Tomcat 8, and replace the corresponding server.xml file with the .xml information provided below.

Server.xml 1

<?xml version=’1.0’ encoding=’utf-8’?>
<Server port=”50005” shutdown=”SHUTDOWN”>
 <Listener className=”org.apache.catalina.startup.VersionLoggerListener” />
 <Listener className=”org.apache.catalina.core.AprLifecycleListener” SSLEngine=”on” />
 <Listener className=”org.apache.catalina.core.JreMemoryLeakPreventionListener” />
 <Listener className=”org.apache.catalina.mbeans.GlobalResourcesLifecycleListener” />
 <Listener className=”org.apache.catalina.core.ThreadLocalLeakPreventionListener” />

 <GlobalNamingResources>
 <Resource name=”UserDatabase” auth=”Container”
 type=”org.apache.catalina.UserDatabase”
 description=”User database that can be updated and saved”
 factory=”org.apache.catalina.users.MemoryUserDatabaseFactory”
 pathname=”conf/tomcat-users.xml” />
 </GlobalNamingResources>

 <Service name=”Catalina”>
 <Connector port=”51111” protocol=”HTTP/1.1”
 connectionTimeout=”20000”
 redirectPort=”51113” />

 <Engine name=”Catalina” defaultHost=”localhost”>
 <Cluster className=”org.apache.catalina.ha.tcp.SimpleTcpCluster”/>
	 <Realm className=”org.apache.catalina.realm.LockOutRealm”>
 <Realm className=”org.apache.catalina.realm.UserDatabaseRealm”
 resourceName=”UserDatabase”/>
 </Realm>

 <Host name=”localhost” appBase=”webapps”
 unpackWARs=”true” autoDeploy=”true”>

 		 <Valve className=”org.apache.catalina.valves.AccessLogValve” directory=”logs”
 prefix=”localhost_access_log” suffix=”.txt”
 pattern=”%h %l %u %t "%r" %s %b” />

 </Host>
 </Engine>
 </Service>
</Server>

9ROGUEWAVE.COM

Server.xml 2

<?xml version=’1.0’ encoding=’utf-8’?>
<Server port=”50006” shutdown=”SHUTDOWN”>
 <Listener className=”org.apache.catalina.startup.VersionLoggerListener” />
 <Listener className=”org.apache.catalina.core.AprLifecycleListener” SSLEngine=”on” />
 <Listener className=”org.apache.catalina.core.JreMemoryLeakPreventionListener” />
 <Listener className=”org.apache.catalina.mbeans.GlobalResourcesLifecycleListener” />
 <Listener className=”org.apache.catalina.core.ThreadLocalLeakPreventionListener” />

 <GlobalNamingResources>
 <Resource name=”UserDatabase” auth=”Container”
 type=”org.apache.catalina.UserDatabase”
 description=”User database that can be updated and saved”
 factory=”org.apache.catalina.users.MemoryUserDatabaseFactory”
 pathname=”conf/tomcat-users.xml” />
 </GlobalNamingResources>

 <Service name=”Catalina”>
 <Connector port=”51112” protocol=”HTTP/1.1”
 connectionTimeout=”20000”
 redirectPort=“51114 “ />

 <Engine name=”Catalina” defaultHost=”localhost”>
 <Cluster className=”org.apache.catalina.ha.tcp.SimpleTcpCluster”/>
	 <Realm className=”org.apache.catalina.realm.LockOutRealm”>
 <Realm className=”org.apache.catalina.realm.UserDatabaseRealm”
 resourceName=”UserDatabase”/>
 </Realm>

 <Host name=”localhost” appBase=”webapps”
 unpackWARs=”true” autoDeploy=”true”>

 <Valve className=”org.apache.catalina.valves.AccessLogValve” directory=”logs”
 prefix=”localhost_access_log” suffix=”.txt”
 pattern=”%h %l %u %t "%r" %s %b” />

 </Host>
 </Engine>
 </Service>
</Server>

Configurations
Create a Tomcat cluster
Tomcat clustering is very simple to setup. However, if you wish to leverage clustering in your enterprise environment the
default configuration is not going to be the best route for you. To turn on clustering in your Tomcat server all you have to
do is add one line of code to your server.xml.

<Cluster className=”org.apache.catalina.ha.tcp.SimpleTcpCluster”/>

Adding this line to your configuration enables clustering with all of the default settings. This would be great if you were
not in an enterprise setting.

10ROGUEWAVE.COM

You have created a clustered Tomcat instance, but you only have one instance, so it is not a very big cluster. Before we
create the next instance we should install the application we want to test on this cluster.

Make your web application distributable
With your cluster running, placing a normal application on one server will not trigger propagation to other servers. The
idea behind propagation is: an application is placed on one node in the cluster, it is migrated (copied) automatically to
other nodes in the cluster. To achieve this we add the following code to the web.xml:

<distributable/>

This tells Tomcat that this application is designed to run on multiple nodes in this cluster.

Set up session replication
The default session replication mode is “All to All,” meaning any session data created on a server will be duplicated to all
other servers in the cluster. If your application creates session data for a user, and you have a heterogeneous cluster,
the session data will still be replicated across the other nodes. A heterogeneous configuration is one that does not have
all of the same applications on every node. Therefore, if application A stores session data for a user, and application A is
running on server A, but not server B, session data will replicate to server B, even though there is no use for it there.

Configure multicast setup
The cluster is discovered and maintained via multicast heartbeats. The server will be set up with a default multicast IP
address of 228.0.0.4 and a multicast port of 45564. This means that any other nodes that are using the same multicast
address and port will see this cluster/node. It is important to ensure your network supports multicast. This is commonly
blocked for security reasons.

Additional considerations
The Manager object
After creating the cluster object and making your web applications distributable, we need to move on to configuring
other settings.

The Manager object controls session replication.

<Manager
 className=”org.apache.catalina.ha.session.DeltaManager”.../>

The DeltaManager replicates all changed session data to all nodes of the cluster. The BackupManager backs up session
data to a specific backup node. For large clusters the BackupManager is the option to go with, for smaller clusters it is
common to just use the default DeltaManager.

In Tomcat 5, you couldn’t choose the specific session manager for your application. In Tomcat 8, you can define a
manager in the cluster configuration, as you could in earlier versions, but you can also define a manager in a web
application’s context.

Rogue Wave provides software development tools for mission-critical applications. Our trusted solutions address the growing complexity of building
great software and accelerates the value gained from code across the enterprise. The Rogue Wave portfolio of complementary, cross-platform tools
helps developers quickly build applications for strategic software initiatives. With Rogue Wave, customers improve software quality and ensure code
integrity, while shortening development cycle times.

© 2015 Rogue Wave Software, Inc. All rights reserved.

Defining the Manager in your clustering configuration provides a default setting for applications that do not provide
their own Manager configuration. For instance, the following code will set all applications in your cluster to use the
BackupManager for session replication.

<Manager
 className=”org.apache.catalina.ha.session.BackupManager”.../>

Channel send options
After setting the Manager, you might need to apply a non-default channel send options value. Channel send options is a
setting specified on the cluster object. For example:

<Cluster
 className=”org.apache.catalina.ha.tcp.SimpleTcpCluster”
 channelSendOptions=”6”>

Channel send options controls how messages are sent between cluster nodes. Are these message sent synchronously,
or, in layman’s terms, does the thread that sends the message have to wait until the message has sent before continuing
to work, in turn, potentially making the users request wait on this message to be sent? Sending the messages
asynchronously is when the thread generates and sends the message, but does not stop and wait for this to happen.
It does this by spawning a worker thread.

As you can see, this is just one aspect of the channel send options, and it is a lot of information. To go over channel
send options in detail will require a whole default channel send mode is asynchronous.

CONCLUSION
This paper barely scratches the surface of clustering. What we have provided is a starting point for your cluster. With
the information provided here you can start a cluster containing two or one thousand nodes, it is just a matter of
determining your company’s needs.

The cluster configuration in Tomcat can be simple. As demonstrated here we were able to configure a cluster in a small
amount of time. Problems like nodes not joining cluster, session information being lost, random node crashes, and
configuration issues are normally resolved with little effort. Tomcat clustering is a powerful tool that can provide the
high availability, reliability, and dependability that your company requires and all of it can be setup with little effort.

